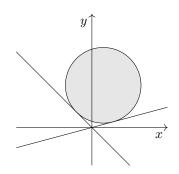
- 4101. A function is given, over \mathbb{R} , as $f(x) = \sin x + x$, where the sine function takes radian input.
 - (a) Show that the graph of y = f(x) has infinitely many stationary points of inflection.
 - (b) Hence, sketch y = f(x).
 - 4102. A smooth cylinder of weight W, represented in cross-section by a circle of radius 1 in a vertical (x, y) plane, rests in equilibrium on two oblique planes, represented in cross-section by the lines y = -x and $y = (2 \sqrt{3})x$.



Find the contact force applied to the cylinder by each of the two planes.

4103. Three functions, all defined over \mathbb{R} , are such that

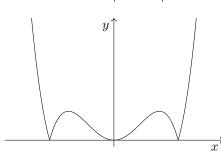
$$\begin{aligned} \mathbf{f}_0'(x) &= \mathbf{f}_1(x),\\ \mathbf{f}_1'(x) &= \mathbf{f}_2(x). \end{aligned}$$
 Find $\int x\,\mathbf{f}_2(x)\,dx$ in terms of $\mathbf{f}_0(x)$ and $\mathbf{f}_1(x).$

4104. For non-zero constants $a_1, ..., a_k \in \mathbb{R}$ and $k \in \mathbb{N}$, a function has the form

$$f(x) = a_1 x + a_2 x^3 + a_3 x^5 + \dots + a_k x^{2k+1}$$

Prove that y = f(x) is inflected at the origin.

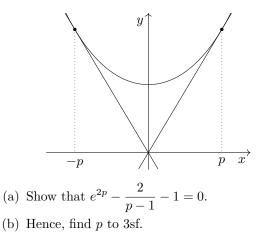
- 4105. A triangle has side lengths in GP with common ratio r. Determine all possible values of r.
- 4106. The graph shown is $y = |x^4 x^2|$.



Sketch the graph of $|y| = |x^4 - x^2|$.

4107. Find $\int \frac{e^x + 2}{e^x + 3} dx$.

4108. The tangents to the curve $y = e^x + e^{-x}$ at $x = \pm p$ pass through the origin.



- 4109. Show that the curve $y = \sin^2 x$ and the x axis enclose infinitely many regions of area $\frac{\pi}{2}$.
- 4110. You are given that the function

$$f(x) = \ln x + \ln(k - x)$$

is stationary at $f(x) = \ln 25$. Determine k.

4111. A circle and a parabola are defined, for constants a, b > 0, by the equations

$$x^2 + y^2 = 1,$$

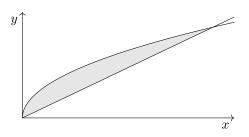
$$y = a - bx^2.$$

You are given that the circle and the parabola have exactly three distinct points of intersection. Find all possible values of a and b.

4112. The numbers $a, b, c, d, e \in \mathbb{R}$ are in increasing GP, with common ratio r > 1. Prove that

$$a + e > b + d > 2c.$$

4113. The area enclosed by the curve $y = \sqrt{x}$ and the line y = mx is 36.



Determine the value of m.

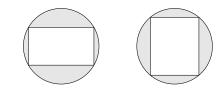
4114. From a small population of a hundred, a sample of four is taken. Assuming that exactly 90% of the population is below the 90th percentile, find, to 3sf, the probability that exactly two of the four are at or above the 90th percentile.

4115. A graph y = h(x) has a point of inflection at (a, b). For each of the following, state whether the graph must necessarily have a point of inflection. If so, give the coordinates of the point of inflection; if not, give a counterexample.

(a)
$$y = 2h(x) + 3$$

- (b) $y = (h(x))^2$,
- (c) y = h(2x + 3).

4116. A rectangle is to be inscribed in a fixed circle.



Prove that the area of the rectangle is maximised if it is a square.

4117. Find $\int x^2 \ln x \, dx$.

4118. An implicit relationship is given as

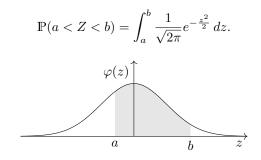
$$x\sqrt{1-y^2} + y\sqrt{1-x^2} = 1.$$

Show that the locus of this relationship contains part, but not all, of the unit circle.

4119. Solve the equation $x^{\frac{3}{2}} + 3x = x^{\frac{1}{2}} + 3$.

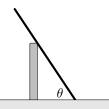
4120. Consider the curve $y = \frac{1 - x^2}{1 + x^2}$.

- (a) Show that the curve has one stationary point.
- (b) Determine the behaviour as $x \to \infty$.
- (c) Hence, sketch the curve.
- 4121. For a normal distribution $Z \sim N(0, 1)$, computers calculate $\mathbb{P}(a < Z < b)$ by evaluating numerically the definite integral

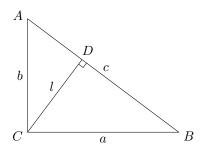


- (a) Use the trapezium rule with four strips each of width 0.25 to estimate $\mathbb{P}(0 < Z < 1)$.
- (b) Compare your answer to the value produced by a calculator, with reference to the "bell curve" shape of the normal distribution.

4122. A ladder of length 2l and weight W is placed, in equilibrium, against a low wall of height l. The ground is modelled as smooth and the wall as rough.



- (a) By taking moments around the top of the wall, show that the reaction force at the ground is given by $R_1 = W(1 \sin \theta)$.
- (b) Show that the reaction force at the top of the wall satisfies $R_2 \leq \frac{1}{2}W$.
- 4123. The curve C has equation $y = xe^x$. A normal N is drawn at the point x = p. Show that
 - (a) if p = -1, N does not re-intersect C,
 - (b) if p < -1, N does re-intersect C.
- 4124. In a right-angled triangle ABC, a perpendicular is drawn from vertex C to side AB.



The reciprocal Pythagorean theorem states that

$$\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{l^2}.$$

By calculating the area of $\triangle ABC$ in two different ways, or otherwise, prove the theorem.

4125. Prove the following result:

$$\int_{1}^{\infty} \frac{\ln x + 1}{x^2} \, dx = 2.$$

You may assume that $\lim_{k \to \infty} \frac{\ln k}{k} = 0.$

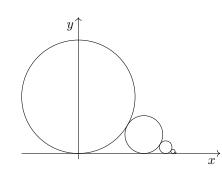
4126. A curve, which passes through the origin, has a gradient given by

$$\frac{dy}{dx} = \frac{x^2 - 1}{2y}.$$

Show that the curve also passes through $(\pm\sqrt{3}, 0)$.

4128. An infinite sequence of circles C_n , all tangent to the x axis, have centres (x_n, y_n) and radii r_n . The circles are configured such that:

- Circle C_0 has $x_0 = 0$ and $r_0 = 1$,
- C_{n+1} is tangent to C_n ,
- $r_{n+1} = \frac{1}{3}r_n$.



- (a) Show that the centres lie on a straight line.
- (b) Hence, determine $\lim_{n \to \infty} x_n$.

4129. The function f is defined, for x in radians, as

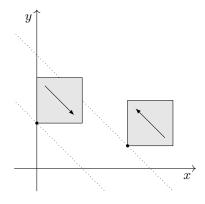
$$f(x) = x \tan x.$$

By calculating f(0), f'(0) and f''(0), prove that, for small x, f(x) may be approximated by $g(x) = x^2$.

4130. Two squares of side length 2 are moving in the (x, y) plane. Their sides are parallel to the axes, and their lower-left vertices have position vectors \mathbf{r}_1 and \mathbf{r}_2 , where

$$\mathbf{r}_1 = \begin{pmatrix} t \\ 2-t \end{pmatrix}, \quad \mathbf{r}_1 = \begin{pmatrix} 4-t \\ 1+t \end{pmatrix}$$

In the diagram, the squares are pictured at t = 0, with the paths of their lower-left vertices drawn as dotted lines.



- (a) Find the set of t values for which the squares have area in common.
- (b) Determine the maximal common area.

4131. Use integration by parts to find $% \left({{{\left({{{{\bf{n}}}} \right)}_{{{\bf{n}}}}}} \right)$

$$\int \sec^2 x \cdot \ln|\sin x| \, dx.$$

- 4132. A bass piano note has two strings tuned to the same frequency. If the two notes are slightly out of tune, a phenomenon known as a *beat* is heard.
 - (a) By letting x = a + b and y = a b, prove the sum-to-product identity

$$\cos x + \cos y \equiv 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right).$$

(b) The out-of-tune notes of the individual strings are modelled by the functions

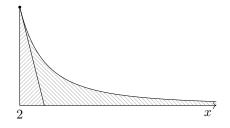
$$t \mapsto \cos pt$$
 and $t \mapsto \cos qt$

where p and q differ by only a small amount. By comparing the functions

$$t \mapsto \cos\left(\frac{p+q}{2}t\right)$$
 and $t \mapsto \cos\left(\frac{p-q}{2}t\right)$

to those of the individual notes, explain why a *beat* is heard as a slow, periodic change in volume.

4133. The graph of $y = (x - 1)^{-2}$ is shown, for $x \ge 2$. The straight line is tangent to the curve at x = 2.



Show that, over the domain $[2, \infty)$, the tangent line splits the shaded area in the ratio 1:3.

4134. Two sequences U_n and V_n have ordinal formulae, for $n \in \mathbb{N}$, given by

$$U_n = 3n^3 - n^2 - 2n + 1,$$

$$V_n = 2n^3 + n^2,$$

Show that there are exactly two values of n for which $U_n < V_n$.

4135. True or false?

v1.2

- (a) Every cubic has a quadratic factor,
- (b) Every quartic has a cubic factor,
- (c) Every quintic has a quartic factor.
- 4136. Show that the following simultaneous equations have exactly one (x, y) solution:

$$\log_{10} x + 2\log_{10} y = 1$$

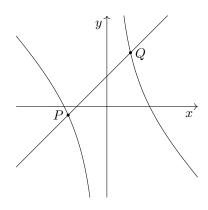
y = 2x - 3.

4137. A graph has equation

$$y = x^3 e^x$$
.

Show that this graph has

- (a) a local minimum at x = -3,
- (b) a point of inflection at x = 0.
- 4138. The curve $xy + x^2 = 2$ is shown, together with a line y = x + k. The two intersect at P and Q.

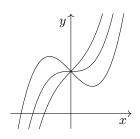


Find all values of k for which $|PQ| = \frac{5\sqrt{2}}{2}$.

4139. A set of n coins is tossed simultaneously. Given that at least n-1 of the coins show tails, find the probability that all n of the coins show tails.

4140. Find the range of
$$f(x) = \frac{1}{x-1} + \frac{1}{(x-1)^2}$$
.

4141. You are given that $y = x^3 - 3kx + 2$, where k is a constant, intersects the x axis exactly once. Three examples are shown below.



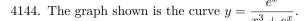
- (a) Find the coordinates of any stationary points, in terms of k.
- (b) Hence, find the set of possible values of k.
- 4142. A polynomial function f has, for some $a \neq b$,

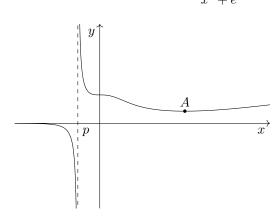
$$f(a) = f'(a) = f(b) = f'(b) = 0.$$

Prove that f must have degree $n \ge 4$.

4143. Polygon P is a convex n-gon, where $n \ge 5$. The interior angles of P are in arithmetic progression. Show that every interior angle θ satisfies

$$\theta > \frac{n-4}{n}\pi.$$





- (a) The vertical asymptote has equation x = p. Determine the value of p, to 4sf.
- (b) Find the exact coordinates of the stationary point marked A.
- 4145. A definite integral is given as

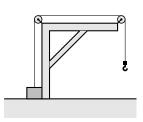
$$\int_0^1 \tan(x^2) \, dx$$

Show that approximation of this integral by the trapezium rule will always give an overestimate, irrespective of the number of trapezia used.

4146. Show that the curves $y = 2x^2 - 1$ and $x = y^2$ intersect inside the ellipse with equation

$$\left(x+y-\frac{4}{5}\right)^2 + 3\left(y-x+\frac{1}{2}\right)^2 = 3$$

4147. A dockyard hoist is modelled as consisting of a fixed arm and a cable which passes over smooth pulleys from a winch engine to a hook. All masses other than those of loads attached to the hook may be assumed to be negligible.



- (a) A load of mass 200 kg is attached to the hook.
 - i. With the load in equilibrium, find the force exerted on each pulley by the cable.
 - ii. The winch engine now accelerates the load upwards at $0.1g \text{ ms}^{-2}$. Find the combined downward force exerted by both pulleys on the hoist arm.
- (b) The hoist arm can safely sustain a combined downward force of 20 kN. Find the maximum safe acceleration of an 800 kg load.

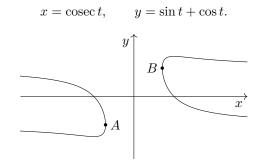
NW.GILESHAYTER.COM/FIVETHOUSANDQUESTIONS.ASI

- 4148. A graph has equation $f_1(x) f_2(y) = 1$, for some functions f_1 and f_2 . The graph is rotated 180° around the origin. Write down the equation of the transformed graph.
- 4149. Show there there are no values of a and b which satisfy both the inequality $a^2 + 3b^2 < 10$ and the equation $b = 12 - a^2$.
- 4150. A quartic curve Q has equation $y = x^4 + x$. A student claims that Q has the origin as a point of inflection.

State, with a reason, whether this is true or not.

4151. A graph is defined parametrically as

GILESHAYTER. COM/FIVETHOUSANDQUESTIONS.



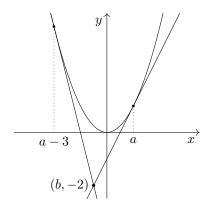
(a) Show that the Cartesian equation is

$$(xy - 1)^2 + 1 = x^2.$$

- (b) Find the coordinates of the points, labelled A and B, at which the distance from the curve to the y axis is stationary with respect to t.
- 4152. Find the constant term in the expansion of

$$(x-1)^4 \left(1+\frac{1}{x}\right)^4$$

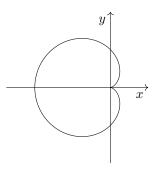
4153. The curve $y = x^2$ has two tangents, at x = a and x = a - 3, which meet at the point (b, -2).



Find all possible values of a and b.

4154. Four smooth, uniform spheres of radius r and mass m are hung from the same fixed point, each by a string of length r attached to its surface. The spheres hang in equilibrium, symmetrically. Show that the tension in each string is $T = \sqrt{2}mq$.

4155. The graph shown is a cardioid.



It has parametric definition

$$x = 2(1 - \cos t)\cos t,$$

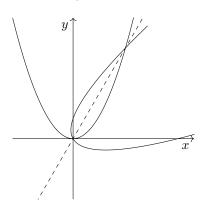
$$y = 2(1 - \cos t)\sin t.$$

Verify that its Cartesian equation is

$$(x^{2} + y^{2})^{2} + 4x(x^{2} + y^{2}) - 4y^{2} = 0.$$

4156. Show that, for all $x \in \mathbb{R}$, $\frac{2x^2}{1+x^2} \le |x|$.

4157. In the diagram below, the graph $y = x^2$ has been reflected in the line $y = \sqrt{3}x$.



Find the equation of the line of symmetry of the transformed graph.

4158. In a kinematics model, a particle is moving under the action of an attractive force. It has position xat time t. Units are metres and seconds. Initially, the particle is at position x = 1. The relationship between velocity and position is modelled as

$$v = x^2$$
.

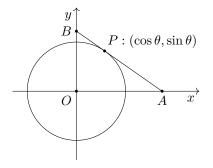
Show that this model breaks down beyond the first second of the motion.

- 4159. A polynomial $x \mapsto f(x)$ has f'''(x) > 0 for all $x \in \mathbb{R}$. Show that the range of f is \mathbb{R} .
- 4160. Show that there are no x values satisfying

$$\sin^3 x - 8\cos^2 x + 21\sin x + 26 = 0.$$

FEEDBACK: GILES.HAYTER@WESTMINSTER.ORG.UK

- 4161. Show that $y = x^3 + y^3$ has points of inflection at (0,0) and $(0,\pm 1)$.
- 4162. The independent variables $X_1, ..., X_n$ represent a random sample of size *n* taken from a population with distribution $X \sim N(\mu, \sigma^2)$. Write down the distributions of
 - (a) X_1 ,
 - (b) \overline{X} ,
 - (c) $X_1 + X_2 + ... + X_k$, (d) $\frac{1}{n} \sum_{i=1}^{n} (aX_i + b)$, for constants a, b.
- 4163. A unit circle, centred at the origin, has a tangent, which is neither horizontal nor vertical, drawn at point $P : (\cos \theta, \sin \theta)$. The tangent crosses the x axis at A and the y axis at B.



Prove that the area of triangle OAB is $\csc 2\theta$.

- 4164. Find $\int \frac{18x^3 6x}{3x^3 2x^2 x} \, dx.$
- 4165. Two functions are defined as f(x) = 2x + 1, with domain \mathbb{R} , and $g(x) = \sqrt{x}$, with domain \mathbb{R}^+ . Show that x = 0 is the only real root of the equation

$$\mathrm{fg}(x) - \mathrm{gf}(x) = 0.$$

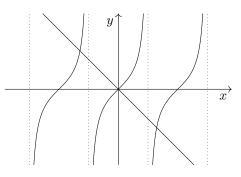
4166. An exponential model is being used to describe the velocity v of falling objects. At time t, the velocity is given, for positive constants k and A < B, by

$$v = A(1 - e^{-kt}) + Be^{-kt}.$$

- (a) Sketch a velocity-time graph.
- (b) Interpret the constants A, B and k.
- (c) Explain whether this model describes objects falling from rest or not.
- (d) The units of v and A are ms⁻¹. Write down the units of B and k.
- (e) Show that the displacement s at time t is

$$s = At + \frac{B - A}{k} \left(1 - e^{-kt} \right).$$

- 4167. Prove that the function $f(x) = \log_a x \log_b x$, where 1 < a < b, is increasing for $x \in (0, \infty)$.
- 4168. The graph $y = \tan x$ consists of infinitely many periodic sections, separated by asymptotes. Three of these sections are shown below, together with the line y = -x.



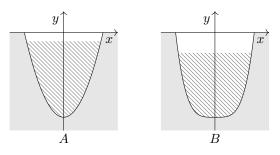
- (a) Show that $y = \tan x$ and y = -x are normal to each other at the origin.
- (b) Show that, despite the result of part (a), the line y = -x is not the path of closest approach between the sections of $y = \tan x$ shown.
- 4169. Determine whether or not the following limits are well defined:

(a)
$$\lim_{x \to 1} \frac{(x+1)(x-1)}{|x+1|(x-1)},$$

(b)
$$\lim_{x \to 1} \frac{(x+1)|x-1|}{(x+1)(x-1)},$$

(c)
$$\lim_{x \to 1} \frac{(x+1)|x-1|}{|x+1|(x-1)}.$$

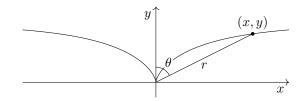
- 4170. Prove that, if two cubic graphs of the form y = f(x) have four distinct points in common, then they must be the same cubic graph.
- 4171. A canyon river runs through location A, at which its cross-section is modelled by $y = \frac{1}{2}x^2 - 32$, to location B, at which its cross-section is modelled by $y = \frac{1}{128}x^4 - 32$. Lengths are given in metres, and ground level is modelled as y = 0. The crosssectional area of the water is equal at A and B.



- (a) Verify that the two cross-sections have the same width and the same depth.
- (b) At A, the surface of the river is 3.27 metres below ground level. Find the equivalent depth of the surface at B.
- VWW.GILESHAYTER.COM/FIVETHOUSANDQUESTIONS.AS

W. GILESHAYTER. COM/FIVETHOUSANDQUESTIONS.

- 4172. The sinusoidal function $f(x) = \sin x + \sqrt{3} \cos x$ is not invertible when defined over the domain \mathbb{R} . Determine the largest interval [a, b] containing zero over which f is invertible.
- 4173. Giving your answer in set notation, determine the set of x values for which $e^{3x} e^{2x} + 5e^x > 0$.
- 4174. The cissoid of Diocles is a classical curve in which distance from the origin r and angle θ (measured, in this question, clockwise from the positive y axis) are related by $r = 2(\sec \theta \cos \theta)$.



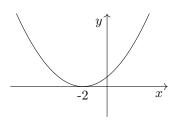
Show that the Cartesian equation of the curve is

$$\left(x^2 + y^2\right)y = 2x^2.$$

- 4175. The height of wheat plants in a field is modelled with a normal distribution $H \sim N(1.1, 0.04)$, with units of metres.
 - (a) A wheat plant is selected at random. Find the probability it is under a metre tall.
 - (b) The interval (a, b), which is symmetric around the mean, has a 90% probability of containing any randomly selected plant. Find a and b.

4176. Prove that
$$\int \frac{1}{x} dx = \ln |x| + c.$$

- 4177. Without doing any calculations, sketch the graph $y = (x a)^{\alpha} (x b)^{\beta} (x c)^{\gamma}$, where 0 < a < b < c, in the cases that
 - (a) $\alpha = 1, \beta = 2, \gamma = 3,$
 - (b) $\alpha = 2, \beta = -2, \gamma = 2.$
- 4178. The graph below is of y = g''(x), for some quartic function g defined over \mathbb{R} .



- (a) Explain why this information is insufficient to locate stationary points.
- (b) Write down the set over which g is convex.
- (c) State, with a reason, whether or not x = -2 is a point of inflection of y = g(x).

- 4179. Show that five unit squares may be packed without overlap into a square of side length $2 + \sqrt{2}/2$.
- 4180. Variables x and y are related as

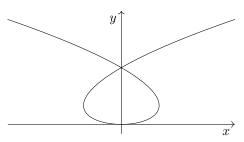
$$x^2y^3 - 2x = 3y.$$

Show that the rate of change of y with respect to x is never zero.

4181. According to the arithmetic mean-geometric mean (AM-GM) inequality, for all $a, b \in \mathbb{R}^+$,

$$\frac{a+b}{2} \ge \sqrt{ab}.$$

- (a) Show that, if equality holds, then a = b.
- (b) Prove the inequality.
- 4182. The function $f(x) = \cos x + k \sec x$, where k is a constant, is defined over $[0, \pi/2)$. Show that
 - (a) when k = 1, f is invertible,
 - (b) when $k = \frac{1}{2}$, f is not invertible.
- 4183. A parametric curve is given by $x = t^3 3t$, $y = t^2$ for $t \in \mathbb{R}$.



The curve has exactly two points A and B with tangents parallel to y. These tangents cross the curve again at P and Q. Show that the area of quadrilateral ABQP is 12.

- 4184. A stuntman of mass m is hanging, in equilibrium, from a wire. On each side of the stuntman, the wire is inclined at 10° and 15° to the horizontal respectively.
 - (a) Explain why the contact between the wire and the stuntman cannot be modelled as smooth.
 - (b) Explain why the reaction force R exerted by the wire on the stuntman is
 - i. not equal to mg, but
 - ii. is approximately equal to mg.
 - (c) Write down the magnitude of the resultant of the two tensions acting on the stuntman.
- 4185. An equation is given as

v1.2

$$(x^{2} - 4)^{3}(x - 2) + x(x^{2} + 2x)^{3} = 0.$$

Show that the equation has exactly one real root.

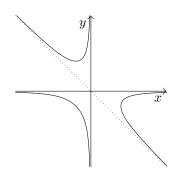
v1.2

FEEDBACK: GILES.HAYTER@WESTMINSTER.ORG.UK

$$\frac{dy}{dx} = \frac{e^x + 1}{e^x + 2}.$$

Determine all possible equations of the curve.

4187. A student draws the following graph, claiming it to be the locus of points satisfying $x^2y + xy^2 = 1$.



Show that this claim is incorrect.

4188. A differential equation is given as

$$\frac{d^2y}{dx^2} = 4y.$$

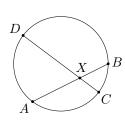
- (a) Verify that $y = e^{2x}$ is a solution.
- (b) A solution is proposed, in the form $y = f(x)e^{2x}$ for some function f. Show that f must satisfy

$$\mathbf{f}'(x) + 4\,\mathbf{f}(x) = k.$$

- (c) Solve by separation of variables to show that $f(x) = A + Be^{-4x}$, for constants A, B.
- (d) Hence, prove that the general solution of the original differential equation is

$$y = Ae^{2x} + Be^{-2x}.$$

- 4189. State, giving a reason, which of the implications \implies , \iff , \iff links the following statements concerning a polynomial function f:
 - (1) f'(x) has a factor of $(x-1)^2$,
 - (2) f''(x) has a factor of (x-1).
- 4190. The statement of the *intersecting chords theorem* relates to the following diagram:



Prove that |AX||BX| = |CX||DX|.

4191. Variables x and $t \ge 0$ are related by

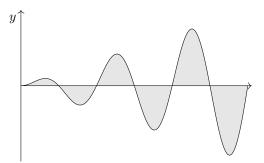
$$t\frac{dx}{dt} = x^2$$

You are given that x = 5 when t = 1. Find x as a simplified function of t.

- 4192. Consider $f(x) = \arcsin x$, over the usual domain.
 - (a) Sketch the graphs y = f(x) and $y = f^{-1}(x)$ on the same set of axes.
 - (b) Using your graph, show that $f'_1(\sin x) = \frac{1}{\cos x}$.

(c) Hence, prove that
$$f'(x) = \frac{1}{\sqrt{1-x^2}}$$
.

- 4193. Three dice have been rolled, giving scores X, Y, Z. Show that $\mathbb{P}(X + Z = 2Y \mid X + Y + Z = 12) = \frac{1}{5}$.
- 4194. The graph $y = x \sin x$, together with the positive x axis, encloses infinitely many regions, as shaded below. These regions have areas A_1, A_2, \dots



Show that A_1, A_2, \dots is an arithmetic progression.

- 4195. Prove that a tangent drawn to a cubic at its point of inflection does not intersect the curve again.
- 4196. Vectors ${\bf a}$ and ${\bf b}$ are defined as

$$\mathbf{a} = \sec \phi \mathbf{i} + \tan \phi \mathbf{j},$$
$$\mathbf{b} = \tan \phi \mathbf{i} + \sec \phi \mathbf{j}.$$

(a) Show that

i.
$$|\mathbf{a}|^2 = |\mathbf{b}|^2 = \frac{1 + \sin^2 \phi}{\cos^2 \phi},$$

ii. $|\mathbf{a} - \mathbf{b}|^2 = \frac{2(1 - \sin \phi)^2}{\cos^2 \phi}.$

(b) Hence, show that the angle θ between **a** and **b** satisfies

$$\cos\theta = \frac{\sin\phi}{1+\sin^2\phi}$$

4197. A function is defined, with θ in radians, as

$$f(\theta) = 6\sin\theta + 8\cos\theta.$$

A value of θ is chosen at random on the interval $[0, 2\pi)$. Find the following probabilities:

(a)
$$\mathbb{P}(\mathbf{f}(\theta) > 5)$$
,
(b) $\mathbb{P}(|\mathbf{f}(\theta)| > 5)$

FEDBACK: GILES.HAYTER@WESTMINSTER.ORG.UK

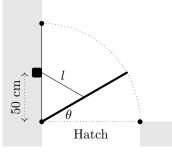
4198. Two quadratic equations are given, with constant coefficients $p, q \in \mathbb{R}$, as

$$x^{2} + px + q = 0,$$

$$x^{2} - px + q = 0.$$

Show that the sum of the four roots is zero.

4199. A square trapdoor of edge length 1 metre is opened from horizontal to vertical by a mechanism. The mechanism consists of a light cable attached to the midpoint of the trapdoor, which is retracted at constant speed u by a winch. The winch, shown as a black box below, is embedded in a wall, 50 cm above the hinge. In side view, the scenario is:



- (a) Show that $\sin \theta = 1 2l^2$.
- (b) Hence, show that $\frac{d\theta}{dt} = \frac{2u}{\sqrt{1-l^2}}$.
- (c) Determine the time at which the angular speed of opening is greatest.
- 4200. The end of a student's solution to a differential equation problem is as follows:

$$\int e^y \, dy = \int 2x + 1 \, dy$$
$$\implies e^y = x^2 + x$$
$$\implies y = \ln(x^2 + x) + c.$$

Explain the error and correct it.